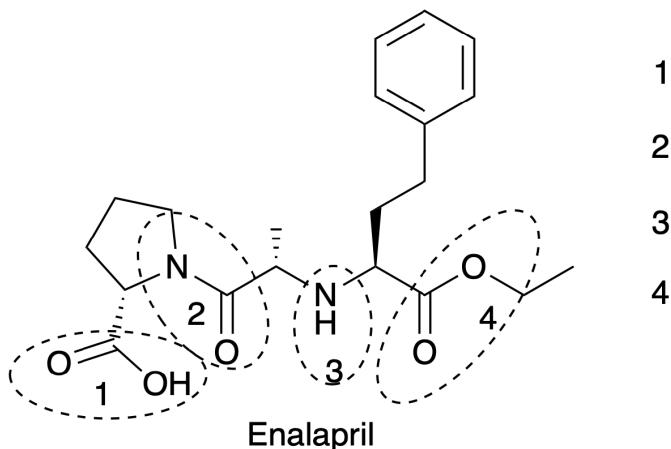
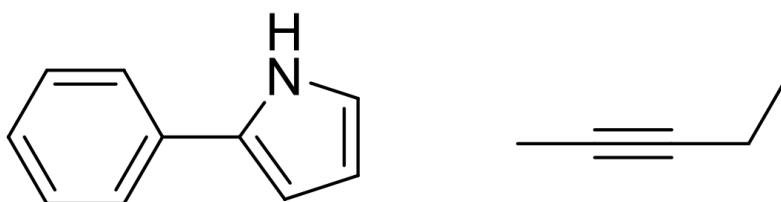


Mock Exam

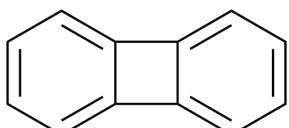

BIO-110: Bio-Organic Chemistry (2024)

Important: This Exam will NOT be corrected individually. It serves simply as a guidance for students to get an overview of the exam concept. The topics covered in the mock exam do not necessarily reflect what will be asked in the final exam. Ultimately, it is a selection of exercises from the pool of topics we covered during the course, the exercise sessions and discussions.

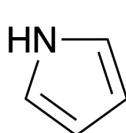

Good Luck! :)

1. Structure & Bonding**1.1. Functional Groups**

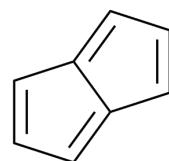
Name all functional groups of Enalapril. (Circled with dashed lines)


1.2. Hybridization

Indicate the hybridization of all atoms except hydrogen for the following molecules.


1.3. Aromaticity

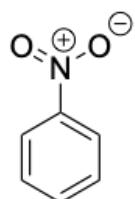
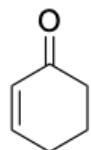
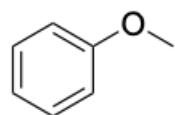
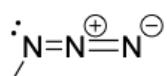
Classify the following as aromatic, non-aromatic or anti-aromatic.


1

2

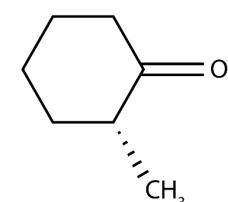
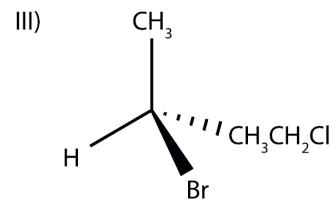
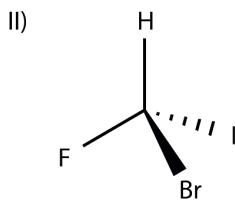
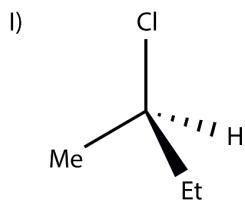
3

aromatic
 non-aromatic
 anti-aromatic

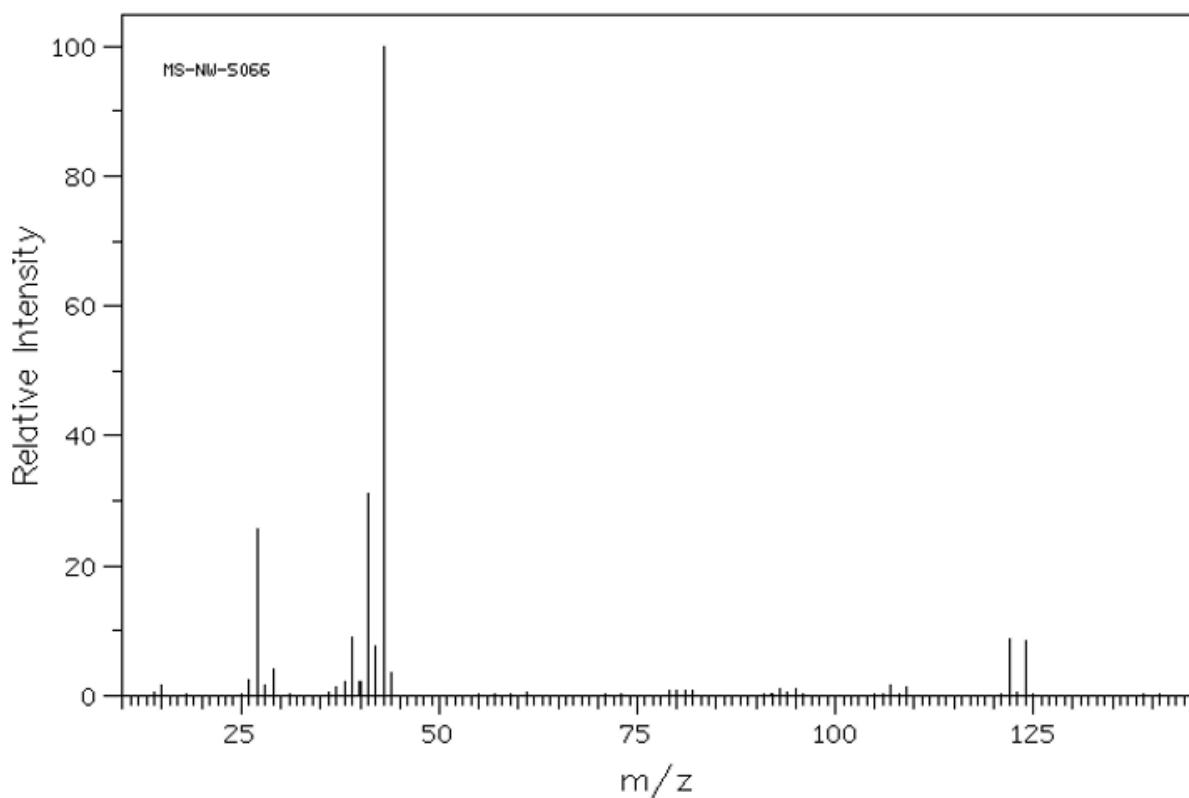




aromatic
 non-aromatic
 anti-aromatic

aromatic
 non-aromatic
 anti-aromatic

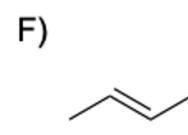
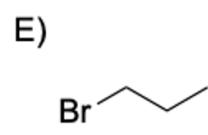
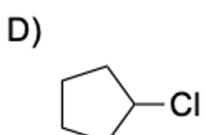
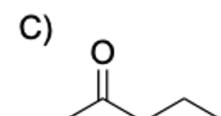
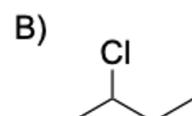
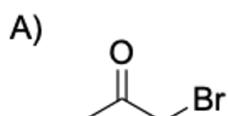
2. Conformation & Stereochemistry





2.1. Resonance structures

Draw the Lewis structure of each resonance contributors for the following molecules.


2.2. Chirality

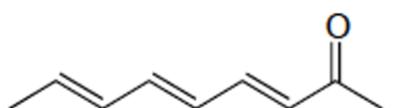
Assign the chiral center as R or S.

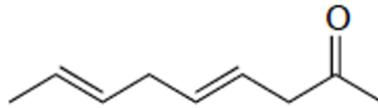







3. IR & NMR & MS**3.1 MS**

a) From the spectra below indicate the m/z number corresponding to the base peak, the parent peak and the $M+2$ peak.

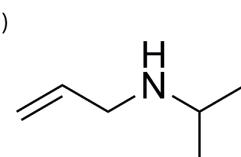
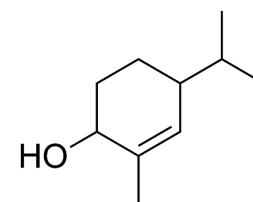
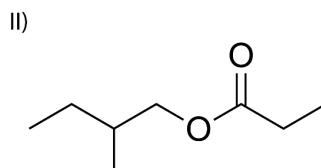
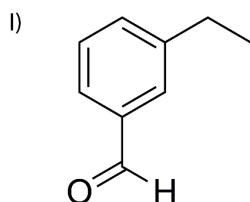
Base peak:**Parent peak:** **$M+2$ peak:**

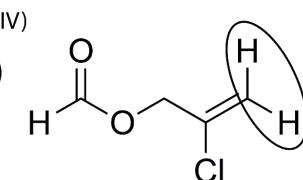
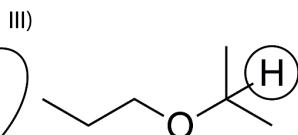
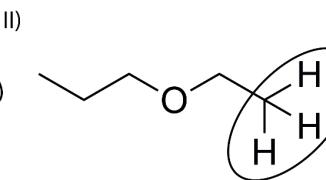
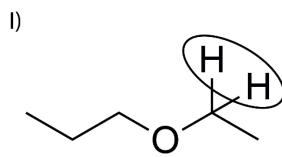

b) Which of the following compounds correspond to the spectra shown above:


3.2 UV-VIS and IR

a) Which would be more useful in distinguishing the two compounds shown below: IR or UV spectroscopy?

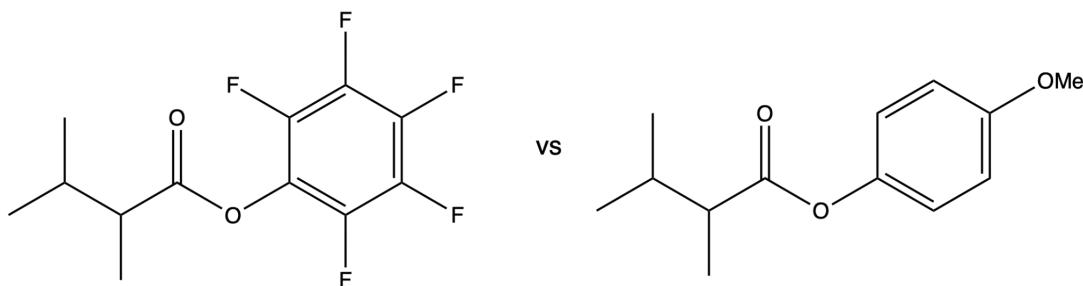
b) Which molecule absorbs at a longer wavelength?





A

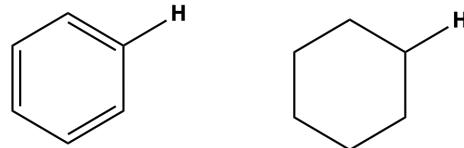




B

3.3 NMR

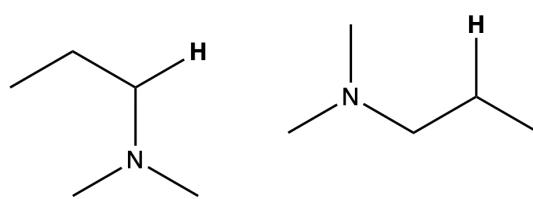
a) For each of the structures indicate the chemically equivalent protons and how many peaks would be found in the ^1H NMR spectrum. Additionally, indicate for each structure which peak you expect to have the highest PPM.


b) Sketch ^1H -NMR peak shapes for the circled protons in the following partial structures.

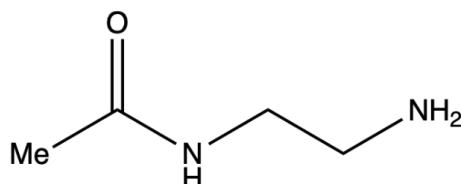
4. Organic Reactivity

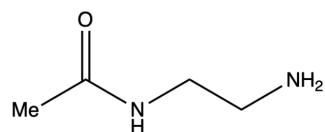

4.1. Reactivity

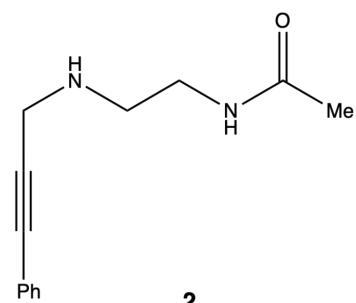
a) Compare the reactivity of the following compounds towards benzylamine. Which one would you expect to react faster and why?

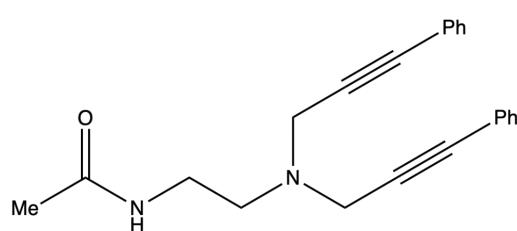


b) Compare the highlighted protons and determine which one is more acidic. Give a brief explanation.


i)


ii)


c) Order the heteroatoms in the compound below from least to most basic.


d) Order compounds 1, 2, 3 from least to most basic. Explain your answer.

1

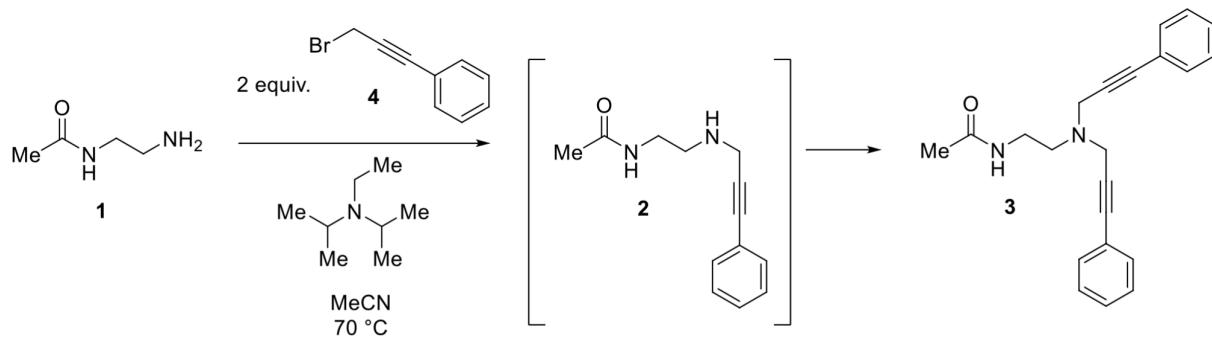
2

3

5. Nucleophilic Substitutions & Eliminations

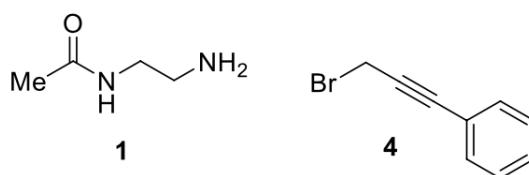
5.1. Reaction Control

Answer the following questions by ticking the corresponding correct answers. Wrong answers will result in a deduction of points, no less than 0 points can be achieved.

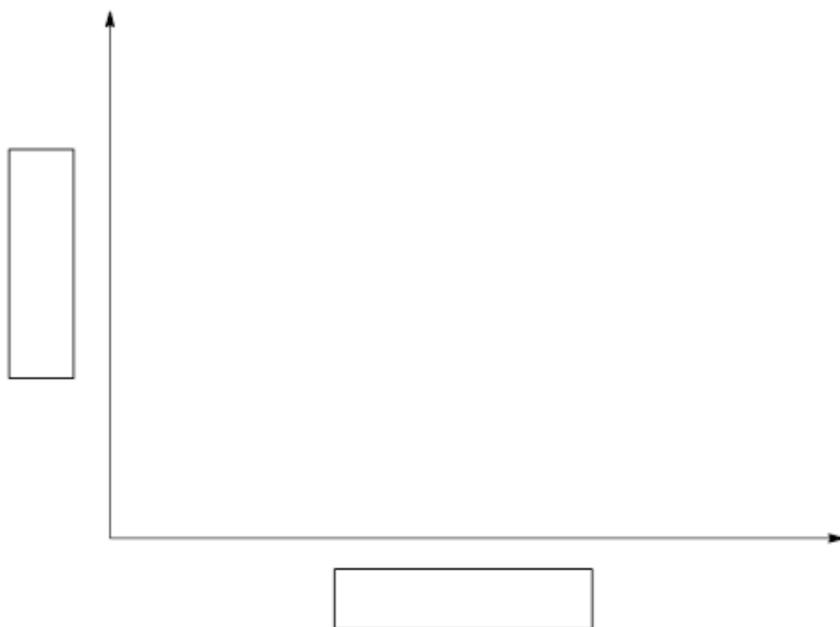

a) Tick the factors that clearly favor the S_N1 mechanism over the S_N2 mechanism:

- good nucleophile
- presence of a strong base
- large steric demands of the substrate
- strong electron-donor substituents at the reactive center
- good leaving group
- basic leaving group

b) Tick the factors that clearly favor the S_N2 mechanism over the E2 elimination mechanism:


- good nucleophile
- strong π acceptors close to the reactive center
- lower temperature
- good leaving group
- absence of a strong base
- possibility of anti-arrangement of leaving group and proton

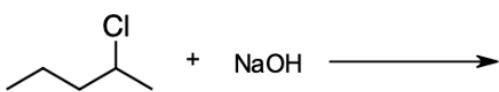
5.2. Reaction Mechanisms



a) The reaction shown above takes place in MeCN (acetonitrile), a polar, aprotic solvent. Give one further example of a polar, aprotic solvent including its structures (you may use the common abbreviations for the names of the solvents).

b) What kind of reaction is this? Which of the molecules shown below reacts as a nucleophile and which as an electrophile? Circle the nucleophilic and electrophilic sites in the molecules (only those sites that take part in the reaction).

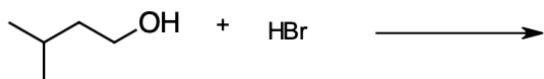
c) Sketch the reaction diagram (free energy versus reaction coordinate) for the reaction from 1 to 2. State the energy levels of the reactants, any intermediates and products. Draw in your diagram where the rate-determining transition state is.

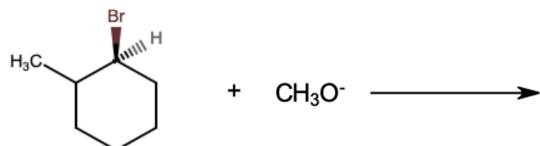


d) Draw the structure of the rate-determining transition state from 1 to 2.

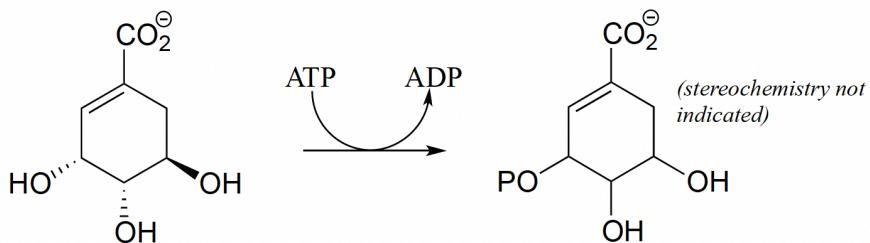
5.3 Substitution vs Elimination

Predict the mechanism (SN1, SN2, E1, or E2) and draw the organic product(s) for each reaction. Account for any regioselectivity and stereoselectivity where relevant.


a)


b)

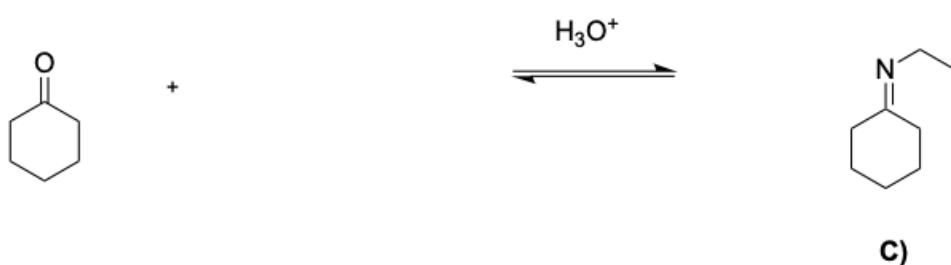
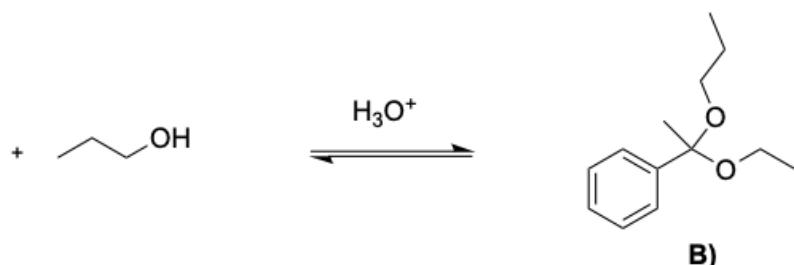
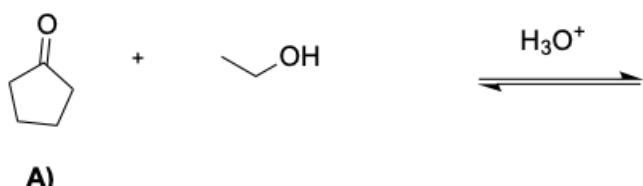
c)



d)

6. Phosphate Transfer Reactions

Draw a likely mechanism for reaction catalyzed by shikimate kinase in the aromatic amino acid biosynthesis pathway. Stereochemistry of the product is not indicated in the figure below - in your mechanism, show the stereochemistry of the product, and explain how you are able to predict it from your knowledge of kinase reactions.

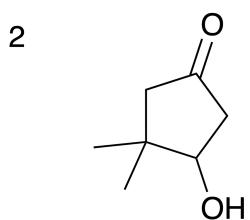
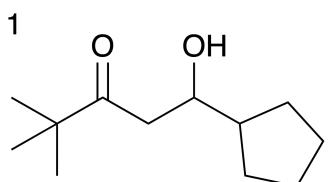




7. Carbonyl Chemistry I

7.1. Reactions

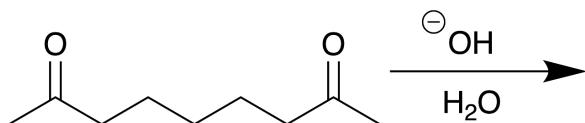
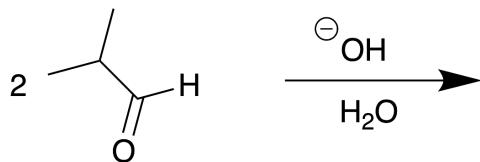
a) For the following 3 reactions, categorize the functional group of compounds A), B), C), as a hemiacetal, hemiketal, acetal, ketal, aldehyde, ketone or imine.

b) Draw the missing reactants/products of the reactions depicted below.

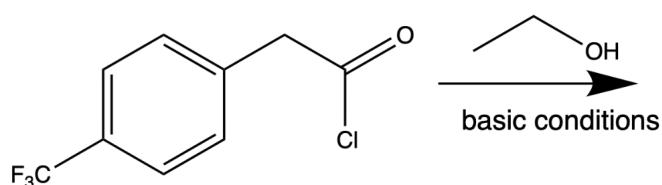
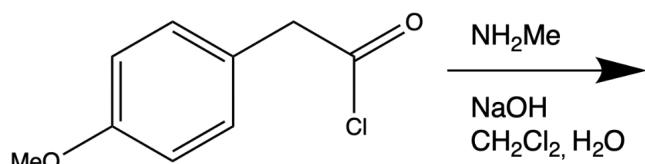
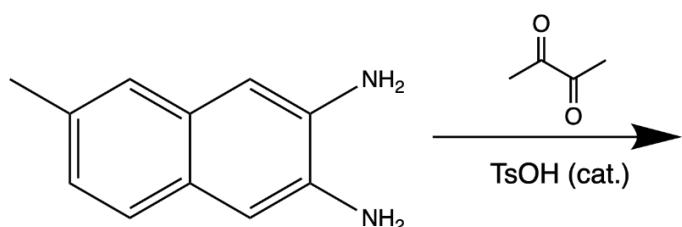
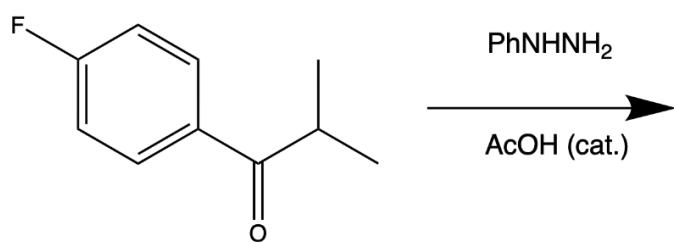


c) Indicate if the following statements are right or wrong (no negative points).

A. In a non-enzymatic addition reaction to a carbonyl the resulting product will be a 50/50 mixture of the two enantiomers (racemate).	Right	Wrong
B. The carbon of a carbonyl group is a good nucleophile.	Right	Wrong
C. Hydrolysis of a hemiacetal leads to an aldehyde.	Right	Wrong
D. A ketone can never be transformed into an imine.	Right	Wrong

8. Carbonyl Chemistry II



8.1. Retro Aldol Reaction

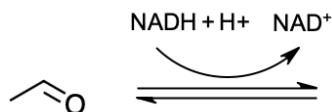
What starting material(s) is/are needed to prepare each compound below via an aldol reaction?





8.2. Aldol Reaction

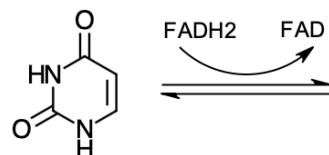
Draw the product formed in the aldol reactions below. If multiple products are possible, explain why your choice is the preferred product.

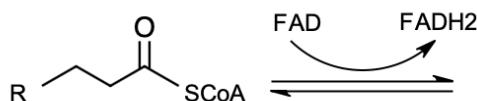
8.3 Reactions

Draw the main product for each of the following reactions in the corresponding empty box. (Hint: Ph = Phenyl, Me = Methyl, Ac = Acetyl, TsOH = Tosylic acid)


9. Oxidations & Reductions

Complete the redox reactions, indicating hydride ion movement and identifying which compound undergoes oxidation and which undergoes reduction.


a) Aldehyde to alcohol:


b)

c) Alkene to alkane:

d)

The Periodic Table of the Elements

1 H Hydrogen 1.00794	4 Be Beryllium 9.012182	5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 O Oxygen 15.9994	9 F Fluorine 18.9984032	10 Ne Neon 20.1797
3 Li Lithium 6.941	11 Mg Magnesium 24.3050	19 Ca Calcium 40.078	20 Sc Scandium 44.955910	21 Ti Titanium 47.867	22 Cr Chromium 50.9415	23 Mn Manganese 54.938049	24 Fe Iron 55.845
37 Rb Rubidium 85.4678	38 Sr Strontium 87.62	39 Y Yttrium 88.90585	40 Zr Zirconium 91.224	41 Mo Molybdenum 92.90638	42 Tc Technetium (98)	43 Ru Ruthenium 101.07	44 Rh Rhodium 102.90550
55 Cs Cesium 132.90545	56 Ba Barium 137.327	57 La Lanthanum 138.9055	57 Hf Hafnium 178.49	72 Ta Tantalum 180.9479	73 W Tungsten 183.84	74 Re Rhenium 186.207	75 Os Osmium 190.23
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)

5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 O Oxygen 15.9994	9 F Fluorine 18.9984032	10 Ne Neon 20.1797
13 Al Aluminum 26.981538	14 Si Silicon 28.0855	15 P Phosphorus 30.973761	16 S Sulfur 32.066	17 Cl Chlorine 35.4527	18 Ar Argon 39.948
31 Ga Gallium 69.723	32 Ge Germanium 72.61	33 As Arsenic 74.92160	34 Se Selenium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.80
45 Ag Silver 107.86882	46 Pd Palladium 106.42	47 Cd Cadmium 112.411	49 In Indium 114.818	50 Sb Antimony 121.760	51 Te Tellurium 127.60
53 Ag Silver 107.86882	54 In Indium 114.818	55 Tin Tin 118.710	56 Xe Xenon 131.29		
48 Rh Rhodium 102.90550	49 Ru Ruthenium 101.07	50 Ag Silver 107.86882	51 Sn Antimony 121.760	52 I Iodine 126.90447	
78 Ir Iridium 192.217	79 Pt Platinum 195.078	80 Ag Silver 196.96655	81 Hg Mercury 200.59	82 Pb Lead 204.3833	83 At Astatine (210)
108 Hs Hassium (265)	109 Mt Mendelevium (266)	110 Ag Silver (269)	111 Tl Thallium (272)	112 Bi Bismuth (272)	113 Po Polonium (209)

Compound		pK _a
Carboxylic acids*	$\text{R}-\text{CO}-\text{H}$	3-5
β -Dicarbonyls*	$\text{RC}-\text{CH}_2-\text{CR}'$	10
β -Ketoesters*	$\text{RC}-\text{CH}_2-\text{COR}'$	11
β -Diesters *	$\text{ROC}-\text{CH}_2-\text{COR}'$	13
Water	HOH	15.7
Alcohols	RCH_2OH	15-19
Acid chlorides*	RCH_2-CCl	16
Aldehydes*	RCH_2-CH	18-20
Ketones*	$\text{RCH}_2-\text{CR}'$	18-20
Esters*	$\text{RCH}_2-\text{COR}'$	23-25
Terminal alkynes	$\text{RC}\equiv\text{C}-\text{H}$	25
LDA	$\text{H}-\text{N}(i\text{-C}_3\text{H}_7)_2$	40
Terminal alkenes	$\text{R}_2\text{C}=\text{C}-\text{H}$	44
Alkanes	$\text{CH}_3\text{CH}_2-\text{H}$	51

Source: <https://keski.condesan-ecoandes.org/organic-chemistry-pka-chart/>